Solutions

1. As it is a phase diagram between pressure and volume, so the work done is just simply the area under the curve.
For Path AB:
$W_{A B}=\frac{\left(V_{2}-V_{1}\right)\left(P_{1}+P_{2}\right)}{2}$
(i.e Area of trapezium $=\frac{\mathrm{hx} \text { (sum of parallel sides) }}{2}$)

For Path BC:

As $\mathrm{dV}=0$, so work done is zero. (since $W=\int P d V$)

For Path CA:
$W=P_{1}\left(V_{1}-V_{2}\right)=-P_{1}\left(V_{2}-V_{1}\right)$
2. For Path AB :

Work done is positive because volume is increasing which means dV is positive.

For Path BC:

Work is zero.

For Path CA:

Work is negative because gas is being compressed. It's volume is decreasing i.e dV is negative.
3.

$$
\begin{aligned}
W_{T} & =W_{A B}+W_{B C}+W_{C A} \\
& =\frac{\left(V_{2}-V_{1}\right)\left(P_{1}+P_{2}\right)}{2}+0+\left(-P_{1}\left(V_{2}-V_{1}\right)\right) \\
& =\left(V_{2}-V_{1}\right)\left(\frac{\left(P_{1}+P_{2}\right)}{2}-P_{1}\right) \\
& =\frac{\left(V_{2}-V_{1}\right)\left(P_{2}-P_{1}\right)}{2}
\end{aligned}
$$

It's positive since $V_{2}>V_{1}$ and $P_{2}>P_{1}$.
4. It is not different because the system returns to the same point ' A ' in the phase diagram with the same state variables.
5. As this system is not isolated from it's environment for such a system work is not a state variable like pressure and volume. Such a system can do work while going in a cycle and returning to the same state.

