Q\#1

Consider a body at temperature T 1 and a reservoir at temperature T .
(a) Calculate the change in entropy of the body and reservoir seperately when they are brought together?
(b) Show that the total change in entropy of the universe is positive.

Solution:

(a) For the reservoir :

$$
\triangle \mathbf{S}_{\text {reservoir }}=\oint d Q_{r e v} / T
$$

The two bodies (reservoir and body) are brought together and maintained at a temperature 'T' (since the reservoir has huge heat compared to the body so it can maintain its temperature).

Entropy defined for this reversible process: ($Q=m * C_{v} * \triangle T$ or $\left.Q=C_{v} * \triangle T\right)$
$\triangle \mathbf{S}_{\text {reservoir }}=-\left(C_{v} * \Delta T\right) / T$
heat given off by reservoir $=$ heat taken in by the body

$$
Q=C_{v}(T-T 1)
$$

$\mathbf{S}_{\text {reservoir }}=C_{v}(T 1-T) / T$
Similarly, Entropy of the body is given by:

$$
\begin{gathered}
\triangle \mathbf{S}_{b o d y}=\int_{T 1}^{T} d Q_{r e v} / T \\
\triangle \mathbf{S}_{b o d y}=\int_{T 1}^{T} C_{v} * d T / T \\
=C_{v} \ln (T / T 1)
\end{gathered}
$$

(b)

$$
\begin{gathered}
\text { Total change in entropy of the universe }=\triangle \mathbf{S}_{\text {body }}+\triangle \mathbf{S}_{\text {reservoir }} \\
=C_{v} \ln (T / T 1)+C_{v}(T 1-T) / T \\
=C_{v}(\ln (T / T 1)+T 1 / T-1)
\end{gathered}
$$

To prove that above is a positive value, lets first consider the worst case scenario where $\mathrm{T}=\mathrm{T} 1$

$$
\begin{gathered}
\Delta \mathbf{S}_{\text {universe }}=C_{v}(\ln (T / T)+T / T-1) \\
=0
\end{gathered}
$$

Therefore, at $\mathrm{T}=\mathrm{T} 1, \triangle \mathbf{S}_{\text {universe }}$ will be zero. In order to prove that $\triangle \mathbf{S}_{\text {universe }}$ is a positive quantity, we need to prove that $\triangle \mathbf{S}_{\text {universe }}$ stays above the temperature axis in the graph below:

$d^{2} S_{\text {universe }} / d T 1^{2}$ should be negative in the region where $\mathrm{T} 1<\mathrm{T}$ for the graph to stay in the positive half of the $\triangle \mathbf{S}_{\text {universe }}$ axis.

$$
\begin{gathered}
\triangle \mathbf{S}_{\text {universe }}=C_{v}(\ln (T / T 1)+T 1 / T-1) \\
d / d T_{1} \triangle \mathbf{S}_{\text {universe }}=? \\
d / d T_{1}\left(\triangle \mathbf{S}_{\text {universe }}\right)=d / d T_{1}(\ln (T / T 1))+1 / T
\end{gathered}
$$

Computing the function:

$$
\begin{aligned}
1 / T+d / d T_{1} & \left(\ln \left(T / T_{1}\right)=d / d u(\ln (u)) * d u / d T_{1}\right. \\
& =\frac{T_{1}\left(d / d T_{1}\left(T / T_{1}\right)\right)+1}{T} \\
& =1 / T+T_{1}\left(-1 / T_{1}^{2}\right) \\
& =1 / T-1 / T_{1} \\
& \frac{d\left(\triangle \mathbf{S}_{\text {universe }}\right)}{d T_{1}}=\frac{1}{T}-\frac{1}{T_{1}}
\end{aligned}
$$

for $T_{1}<T, d / d T_{1}\left(\triangle S_{\text {universe }}\right)$ will always be negative, hence proved.

Q \# 2

(a) Two bodies shown above are brought together, Calculate the entropy change of each body? (assume masses are equal) C_{v} ofboth $=1800 \mathrm{~J} / \mathrm{K}$
(b) Show that the total entropy change is positive.

Solution:

(a) Entropy change of body A: $\triangle S_{A}=\int d Q_{r e v} / T$

When they are brought together, the final temperature of both is :
Heat gained by body $\mathrm{A}=$ Heat lost by body B
assume final temperature of both is T

$$
\begin{gathered}
d Q=C \triangle T \\
d Q_{A}=d Q_{B} \\
C_{v}(T-273)=-C_{v}(T-373) \\
\text { so, } T=323 K
\end{gathered}
$$

At $T=323 \mathrm{~K}$

$$
\begin{gathered}
\triangle S_{A}=\int_{273}^{323} d Q_{r e v} / T \\
\triangle S_{A}=C_{v} \int_{273}^{323} d T / T \\
=C_{v} \ln (323 / 273) \\
=1800 * \ln (323 / 273) \\
=302.72 J / K
\end{gathered}
$$

For body B:

$$
\begin{gathered}
\triangle S_{B}=\int_{373}^{323} d Q_{r e v} / T \\
\triangle S_{B}=C_{v} \int_{373}^{323} d T / T \\
=C_{v} \ln (323 / 373) \\
=1800 * \ln (323 / 373) \\
=-259.07 J / K
\end{gathered}
$$

(b) Total entropy change of universe $=\triangle S_{A}+\triangle S_{B}$
$=302.72+(-259.01)$
$=43.65 \mathrm{~J} / \mathrm{K}$
Hence, the entropy change of the universe is positive. Also, note that the decrease in entropy of the body at a higher temperature is always less than the increase in entropy for the cooler body, hence the entropy change for the universe will always come out to be positive.

