PH-202 Solution Recitation \#2 February, 15, 2011

Answer 1:

Differential form of first law of thermodynamics is,

$$
d U=d Q+d W
$$

Since vessel is made of adiabatic walls, so it is an isolated system, and for an isolated system, $d Q=0, \Rightarrow d U=0$ and $d T=0$. In general, the internal energy of any gas is a function of any two of the coordinates P, V and T. The differential of U as a function of T and V is,

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

In the given case, no temperature change $(d T=0)$ takes place in the free expansion $(d U=0)$. Therefore,

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=0 .
$$

or in other words, U does not depends on V. Now considering U to be a function of T and P, we have,

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P .
$$

Again, if no temperature change $(d T=0)$ takes place in the free expansion ($d U=0$). then it follows that,

$$
\left(\frac{\partial U}{\partial P}\right)_{T}=0 .
$$

or in other words, U does not depend on P. Then it is apparent that, if no temperature change takes place in a free expansion of a gas, U is independent of P and V, and therefore, U is a function of T only, i-e

$$
U=U(T)
$$

Answer 2:

Differential form of first law of thermodynamics is,

$$
d U=d Q+d W
$$

As the process is adiabatic $\mathrm{dQ}=0$

$$
d U=d W
$$

Putting $d U=f n d T$ and $d W=-P d V$ in above equation, gives us

$$
\begin{equation*}
f n d T=-P d V \tag{1}
\end{equation*}
$$

From the Ideal gas equation, we have

$$
P V=n R T
$$

Differentiating both sides

$$
P d V+V d P=n R d T
$$

$$
\begin{equation*}
\frac{P d V+V d P}{n R}=d T \tag{2}
\end{equation*}
$$

Now taking this dT value and inserting it in (??)

$$
\begin{aligned}
f n\left(\frac{P d V+V d P}{n R}\right) & =-P d V \\
\frac{f}{R}(P d V+V d P) & =-P d V \\
\frac{f}{R} V d P & =-\left(1+\frac{f}{R}\right) P d V \\
-\int \frac{d P}{P} & =\left(1+\frac{R}{f}\right) \int \frac{d V}{V} \\
-\ln P & =\left(1+\frac{R}{f}\right) \ln V
\end{aligned}
$$

where $\left(1+\frac{R}{f}\right)$ is a constant which we are taking as γ.

$$
\begin{aligned}
-\ln P & =\gamma \ln V \\
-\ln P & =\ln V^{\gamma} \\
\ln P+\ln V^{\gamma} & =0 \\
\ln \left(P V^{\gamma}\right) & =0
\end{aligned}
$$

Taking exponential on both sides

$$
P V^{\gamma}=\text { constant }
$$

Answer 3:

Again taking differential form of first law of thermodynamics,

$$
d U=d Q+d W
$$

Where, $W=-P d V$,

$$
\begin{equation*}
\Rightarrow d U=d Q-P d V \tag{3}
\end{equation*}
$$

for constant volume the heat capacity is given by,

$$
C_{V}=\left(\frac{d Q}{d T}\right)_{V}
$$

As volume is constant so $\mathrm{dW}=0$, then

$$
\begin{equation*}
d U=C_{V} d T \tag{4}
\end{equation*}
$$

Now, for constant pressure again write the first law of thermodynamics

$$
d U=d Q+d W
$$

and substituting $d W=-P d V$ the value of $d U$ from equation (??) yields,

$$
\begin{align*}
C_{V} d T & =d Q-P d V \\
d Q & =C_{V} d T+P d V . \tag{5}
\end{align*}
$$

Now consider ideal gas equation,

$$
P V=n R T \text {. }
$$

and, for an infinitesimal process,

$$
\begin{aligned}
P d V+V d P & =n R d T \\
P d V & =n R d T-V d P
\end{aligned}
$$

Substituting the value of $P d V$ in equation (??), we get,

$$
\begin{align*}
d Q & =C_{V} d T+(n R d T-V d P) \\
d Q & =\left(C_{V}+n R\right) d T-V d P . \tag{6}
\end{align*}
$$

and dividing by $d T$ yields,

$$
\frac{d Q}{d T}=C_{V}+n R-V \frac{d P}{d T} .
$$

At constant pressure, the left hand side is equal to C_{P} and $d P=0$, therefore,

$$
\text { or } \begin{align*}
C_{P} & =C_{V}+n R, \\
\frac{C_{P}}{C_{V}} & =1+\frac{n R}{C_{V}} . \tag{7}
\end{align*}
$$

We know that internal energy is directly proportional to temperature,

$$
\begin{aligned}
U & =n f T, \\
\Rightarrow C_{V} & =\frac{d U}{d T}=n f . \quad \text { from eq: } 4
\end{aligned}
$$

Thus equation (??) will become,

$$
\begin{aligned}
\frac{C_{P}}{C_{V}} & =1+\frac{n R}{n f} \\
& =1+\frac{R}{f}
\end{aligned}
$$

Where, $1+\frac{R}{f}=$ constant $=\gamma$, Hence,

$$
\frac{C_{P}}{C_{V}}=\gamma
$$

